Home

Virtual Inheritance

Virtual Inheritance시 발생가능한 문제점 #include <iostream> class Animal { public: virtual void speak(); virtual ~Animal() = default; private: double animalData; } class Lion : public Animal { public: Lion() { std::cout << "Lion Consturctor" << std::endl; } virtual void speak() { std::cout &l...

Read more

Multiple Inheritance

#include <iostream> class Lion { public: Lion() { std::cout << "Lion Consturctor" << std::endl; } virtual void speak() { std::cout << "Lion!" << std::endl; } virtual ~Lion() { std::cout << "Lion Desturctor" << std::endl; } private: double lionData;...

Read more

Confusing Term

constexpr 컴파일 타임에 변수의 값을 알 수 있으면 constexpr 사용 (좋은 설명) constexpr int a = 10; constexpr int b = 5; // constexpr이 붙은 함수는 컴파일러가 직접 컴파일 시간에 모든 값을 미리 계산한다 constexpr int fibonacci(const int n) { if (n <= 1) return n; return fibonacci(n - 1) + fibonacci(n - 2); } default class MyClass { public: MyClass() = ...

Read more

Basics

Value Type L-Value: 나중에 다시 부를 수 있는 변수 (Callable) R-Value: 한번 쓰고 다시 안쓰는 변수 (Temporary) std::string a = "abc"; # L = R std::string b = a # L = L 파라미터 해석 파라미터로 &가 오면 L-Value, &&가 오면 R-Value L-Value는 copy sementic R-Value는 move sementic void push_back( const T& value ) void push_back( T&...

Read more

Group

· Group (G) A group G, denoted by { G, + } such that (a, b) of elements in G an element (a + b) in G × G Following axioms are obeyed: Closure under addition: If a and b belong to G, then a + b is also in G Associative of addition: a + (b + c) = (a + b) + c for all a, b, c in G Identity element: There is an element e in G such that a ...

Read more

Basics

Terminology Common Divisor 공약수 Common Multiple 공배수 Prime Number 소수 Least[Lowest] Common Multiple 최소 공배수 Greatest Common Divisor 최대 공약수 Identity element 항등원 Inverse element 역원 Operating rules of real numbers Commutative property 교환 법칙 Associative property 결합 법칙 Distributive property 분배 법칙 Greatest...

Read more

Binary Search Tree

A Binary Search Tree (BST) is a node-based binary tree data structure which has the following properties: The left subtree of a node contains only nodes with keys lesser than the node’s key. The right subtree of a node contains only nodes with keys greater than the node’s key. The left and right subtree each must also be a binary search ...

Read more